S. Panigrahi, R. M. Pattanayak, P. K. Sethy, and S. K. Behera,"Forecasting of sunspot time series using a hybridization of ARIMA, ETS and SVM methods", Solar Physics, vol.296, pp.1-19, Springer 2021, 10.1007/s11207-020-01757-2 Article
S. K. Behera, P. K. Sethy, S. K. Sahoo, S. Panigrahi, and S. C. Rajpoot,"On-tree fruit monitoring system using IoT and image analysis", Concurrent Engineering, vol.29, no.1, pp.6-15, SAGE Publications 2021, 10.1177/1063293X20988395 Article
S. Panigrahi and H. Behera,"A study on leading machine learning techniques for high order fuzzy time series forecasting", Engineering Applications of Artificial Intelligence, vol.87, pp.103245, Elsevier 2020, 10.1016/j.engappai.2019.103245 Article
R., S. Panigrahi, and H. Behera,"High-order fuzzy time series forecasting by using membership values along with data and support vector machine", Arabian Journal for Science and Engineering, vol.45, no.12, pp.10311-10325, Springer 2020, 10.1007/s13369-020-04721-1 Article
S. Panigrahi and H. Behera,"Time series forecasting using differential evolution-based ANN Modelling scheme", Arabian Journal for Science and Engineering, vol.45, no.12, pp.11129–11146, Springer 2020, 10.1007/s13369-020-05004-5 Article
S. Panigrahi and H. Behera,"Nonlinear time series forecasting using a novel self-adaptive TLBO-MFLANN Model", International Journal of Computational Intelligence Studies, vol.8, no.1-2, pp.4-26, Inderscience Publishers 2019, 10.1504/IJCISTUDIES.2019.098013 Article
R. M. Pattanayak, H. Behera, and S. Panigrahi,"A Novel Hybrid Differential Evolution-PSNN For Fuzzy Time Series Forecasting", in Computational Intelligence in Data Mining, vol.990, pp.675–687, Springer 2019, 10.1007/978-981-13-8676-3_57 Inproceedings
S. Panigrahi and H. Behera,"Fuzzy time series forecasting: a survey", in Computational Intelligence In Data Mining: Proceedings Of The International Conference On ICCIDM 2018, vol.990, pp.641-651, Springer 2019, 10.1007/978-981-13-8676-3_54 Inproceedings
R. M. Pattanayak, H. Behera, and S. Panigrahi,"A Multi-step-ahead fuzzy time series forecasting by using hybrid chemical reaction optimization with Pi-sigma higher-order neural network", in Computational Intelligence in Pattern Recognition, pp.1029–1041, Springer 2019, 10.1007/978-981-13-9042-5_88 Inproceedings
S. Panigrahi and H. Behera,"Time series forecasting using a hybrid Jaya-FLANN Model", in 2018 International Conference on Recent Innovations in Electrical, Electronics & Communication Engineering (ICRIEECE), pp.3402-3407, IEEE, Bhubaneswar, India 2018, 10.1109/ICRIEECE44171.2018.9008916 Inproceedings