Synopsis Seminar	
Seminar Title	: Development of Transition Metal Oxide Nanostructures for Non-enzymatic Glucose Biosensors
Speaker	: Bansod Sneha Bharat (Rollno: 519bm1017)
Supervisor	: Dr. Anju R. Babu
Venue	: BM Seminar Hall
Date and Time	: 22 Jan 2025 (09:30)
Abstract	: Transitional metal oxide has a significant role in developing biosensors due to the flexibility for structural modification with a large surface area that facilitates more electron transfer between the analyte and sensor surface, leading to improved sensor performance. The titanium dioxide (TiO_2) and zinc oxide (ZnO) nanostructures exhibit intrinsic peroxidase-like
	activity and have been potential catalysts for various biosensors. In this study, non-enzymatic glucose biosensors were fabricated based on multiple combinations of TiO ₂ nanoparticles, 3D structures ZnO nanoflowers (ZNFs), reduced
	graphene oxide (rGO), iodine, and carboxyl methylcellulose (CMC). The developed nanocomposites were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, high resolution- transmission electron microscopy, energy-dispersive X-ray spectroscopy spectrum, ATR-Fourier transforms infrared, Raman spectroscopy, photoluminescence emission spectra, dynamic light scattering, and zeta potential. The developed TiO ₂ /I ₂ /CMC nanocomposite (TIC) film for non-enzymatic colorimetric glucose detection had a minimum detectable concentration (LOD) of 0.4 mM with a wide linear range (0.5 to 10 mM) at room temperature and a coefficient of
	determination (R^2) = 0.980 (n=3). The I-rGO@TiO ₂ (TIR) sensor exhibited a wider linear detection range (0.5—10 mM)
	at room temperature. The LOD of the sensor was 0.23 μ M (S/N=3), and the sensitivity was 221.69 μ A mM ^{&minus1}
	cm^{minus2} with a $R^2 = 0.985$ (n=3). The ZNFs@TiO ₂ /I-PVA/CMC (ZTIPC) hybrid film was developed to detect
	glucose in human saliva. The novel ZTIPC glucose sensor exhibited a LOD of 0.2 mM with $R^2 = 0.985$ (n=3). The ZTIPC sensor had a linear glucose detection range of 0.5—10 mM with a detection limit of 0.2 mM and a limit of quantitation of 0.7 mM. The average fasting and postprandial glucose in human saliva detected by ZTIPC hybrid film was 0.37 ± 0.24 mM and 0.63 ± 0.30 mM, respectively. The ZTIR nanocomposite exhibited a LOD of 0.7 mM and a limit of
	quantification of 2.3 mM with $R^2 = 0.985$. The enhanced glucose sensitivity of developed nanocomposites was obtained due to the synergistic effect and higher surface-to-volume ratio, providing more active area and narrow bandgap that enhanced the catalytical performance. The structural modification of transitional metal oxides provides a suitable environment for immobilizing molecules and electron transfer charge carriers to enhance catalytic performances suitable for sensing applications.