INVITATION FOR QUOTATIONS FOR SUPPLY OF GOODS UNDER SHOPPING PROCEDURES

Dt: 31.03.2014

No. NITR/TQ-II/CoE-RES/Shopping/2014/L/28

Government of India has received a credit from the International Development Association (IDA) in various currencies towards the cost of the TEQIP-II Project and intends to apply part of the proceeds of this credit to eligible payments under the contract for which this invitation for quotations is issued. The contract shall be for the full quantity as described below.

All duties, taxes and other levies payable by the contractor under the contract shall be included in the total price. The rates quoted by the bidder shall be fixed for the duration of the contract and shall not be subject to adjustment on any account. The Prices should be quoted in Indian Rupees only. The last date of submission of quotation is **14**th **April**, **2014**. The quotation shall remain valid for a period not less than 45 days after the deadline date specified for submission. The submission of the quotation should be in the format provided below.

Department	Package No.	Equipment Name	Specification		Quantity	Contact Person
Electrical Engineering	158			ating		Prof. B. Subudhi, Coordinator, CoE-RES, Ph:0661-2462416, Email: bidyadhar@nitrkl.ac.in
			2 Maximum power	0Wp 5.42V		
			current 6.9 4 Open circuit			
			voltage 43. 5 Short circuit current 7.4 6 No of cells in series 72 7 Panel efficiency 14.	2		
			2. SPV ARRAY MOUNT The panel mounting frames had dual axis of rotation. There sh	ave arrangement for		

adjusting the tilt angle in different seasons..

3. DC - DC converter

Maximum input voltage
Minimum input voltage for feeding
MPP voltage for ratedoutput
Maximum input current
Maximum recommended PV input power

4. INVERTER MODULE

Three Phasel GBT based Power Module Output voltage 195V ... 265V

Rated output voltage

Maximum output current

Maximum output power

Rated power

Rated frequency

Frequency

Night-time power loss

Feeding phases

Power factor

Distortion factor

5. SENSORS

i)3 temperature sensors provided signal conditioning circuits

ii)Input: 0-200° C, Output: 0-5 V DC

3 Nos. of Hall effect current transducers with signal

conditioning circuits.

Input: 0-5 A, Output: 0-3 V

iii)3 Nos. of Hall effect voltage transducers with signal conditioning circuits.

Input: 0-450 V, Output: 0-3 V

6. INVERTERCONTROL SYSTEM Xilinx Artix-7 FPGA AC701 Evaluation Kit (AC701

Base Board + AMS 101 Evaluation Card) AC701 Base Board: ROHS compliant AC701 kit including the XC7A200T-2FBG676C FPGA Targeted Reference Design featuring DDR3, PCIe® and DMA Including a full license for the Northwest Logic DMA DDR3 SODIMM 1GB up to 533MHz / 1066Mbps Quad SPI Flash: 32MB (256Mb)Full seat Vivado® Design Suite: Design Edition Device-locked to the Artix-7 XC7A200T FPGA Printed Getting Started Guide Cables & Power Supply. Additional downloadable content including Reference Designs, Design Examples, and DemosBoard Design FilesExtensive Documentation AMS 101 Evaluation Card XADC 12-bit, 17channel, 1Msps dual ADCs16-bit dual DAC for analog test signals.AMS Evaluator tool for analyzing analog data, internal temperature and voltage measurements, and saving data to a .csv file > Xilinx FMC XM105 Debug Card VITA 57.1 FMC HPC connector Single-ended signals from the carrier board, clocks, JTAG, power. 40 Single Ended I/O (20 Pairs) on the LPC Pins 80 Single Ended I/O (40 Pairs) on the HPC Pins 7. DATA ACQUISITION SYSTEM > Base Board Specification USB TMC Standards True plug and play Multi-Function USB DAQ

Minimum Requirements 12 bit ADC & 14 bit DAC

Engineering		Solar PV Setup	1. PHOTOVOLTAIC SOLAR PANELS: 2 KW		Coordinator, CoE-RES,
Electrical	157	2 kW prototype	Arbitrary Waveform Power Output 2 kW Prototype Solar PV Set up	01	Prof. B.Subudhi,
			Frequency, Power Factor, CF, and Harmonic current		
			Measurement Functions: Voltage, Current, Power		
			PC Software (Including Data Logging)		
			AC+DC output mode for voltage DC offset simulation		
			Control		
			Features Required USB(USBTMC)and RS-232 Standard for Remote		
			Frequency: 20 to 5,000Hz.		
			Current max.: 5A		
			Voltage: 0 up to 450VAC		
			models		
			Form: 1, 2, and 3 phase dedicated or selectable		
			Power: 2kVA		
			Requirements		
			8. PROGRAMMBALE AC SOURCE		
			in a PC through the Data Acquisition system (DAS)		
			* Battery voltage and current, PV panel's voltage and current, Inverter output Voltage and Current displayed		
			MATLAB® DAQ toolbox supported * Pattory voltage and current. PM panel's voltage and		
			NI LabVIEW™ support		
			Support for Visual Studio® and Visual Studio® .NET		
			Win XP / 7 supported drivers		
			Essential Software Support		
			Range : 5v		
			Speed : 2msps		
			Resolution : 14 bit		
			24 high-speed digital I/O lines		
			Analog output : 4 Channel		
			Range: 0to5v		
			Sampling Rate : 1msps		
			Analog Input : 8SE/4DI Simultaneous Sampling : 2 Channel		

Polycrystalline Rating: MPP power 200 watts, MPP voltage 90V, 12 V, 24 Watts PV panels with stand 8 nos. SPV array mounting structure The panel mounting frames have arrangement for dual axis of rotation. The tilt angle should specifically vary 0° to 90° to the horizontal axis. 2. DC TO DC BIDIRECTIONAL BUCK- BOOST CONVERTER FOR CHARGING THE BATTERY i. 4 Nos of high speed IGBT or MOSFET semiconductor devices are used ii. 4 Nos of isolated high speed driver circuits are used iii. 2 Nos of Hall effect Current transducer used for sensing the input and output of the converter current iv. 2 Nos of Hall effect voltage transducer used for sensing the input and output of the converter voltage v. In boost mode I/P is 100V and O/P is 300V vi. In buck mode I/P is 300V and O/P is 100V vii. Power Rating is 200Watts viii. dv/dt protection is available for all IGBT (Snubber	Ph:0661-2462416, Email: bidyadhar@nitrkl.ac.in
circuit) 3. BATTERY 8 Nos of 12V, 200Amps per hour Batteries are connected is sensing to get 100V DC O/P Battery stands to be provided	
4. INVERTER MODULE	
 Essential Requirements Three Phase IGBT based Power Module Power Circuit Input: 230VAC/300 VDC @ 4 amps Power Circuit Output: Suitable 750 watt RL load 	
5. SENSORS	
i. 3 temperature sensors provided signal conditioning	

circuits a. Input: 0-200° C, Output: 0-5 V DC ii. 3 Nos. of Hall effect current transducers with signal conditioning circuits. a. Input: 0-5 A, Output: 0-3 V iii. 3 Nos. of Hall effect voltage transducers with signal conditioning circuits. a. Input: 0-450 V, Output: 0-3 V 6. DC TO DC BOOST CONVERTER	
Input voltage: 100V DC, Output Voltage: 300V DC	
 Essential Requirements High speed IGBT/MOSFET High speed OPTO isolator PWM driver circuit Hall effect current transducer with signal conditioning circuit Hall effect voltage transducer with signal conditioning circuit 	
7. INVERTER CONTROL SYSTEM	
7. HVERTER CONTROL CTOTEM	
 Xilinx Artix-7 FPGA AC701 Evaluation Kit (AC701 Base Board + AMS 101 Evaluation Card) 	
AC701 Base Board:	
 ROHS compliant AC701 kit including the XC7A200T-2FBG676C FPGA Targeted Reference Design featuring DDR3, PCIe® and DMA Including a full license for the Northwest Logic DMA DDR3 SODIMM 1GB up to 533MHz / 	

1066Mbps	
 Quad SPI Flash: 32MB (256Mb) 	
 Full seat Vivado® Design Suite: Design Edition 	
 Device-locked to the Artix-7 XC7A200T FPGA 	
 Printed Getting Started Guide 	
 Cables & Power Supply 	
 Additional downloadable content including 	
 Reference Designs, Design Examples, and 	
Demos	
 Board Design Files 	
 Extensive Documentation 	
5	
AMS 101 Evaluation Card	
And for Evaluation out	
 XADC 12-bit, 17-channel, 1Msps dual ADCs 	
 16-bit dual DAC for analog test signals 	
 AMS Evaluator tool for analyzing analog data, internal 	
temperature and voltage measurements, and saving	
data to a .csv file	
> Xilinx FMC XM105 Debug Card	
VITA 57.1 FMC HPC connector	
 Single-ended signals from the carrier board, clocks, 	
JTAG, power.	
 40 Single Ended I/O (20 Pairs) on the LPC Pins 	
80 Single Ended I/O (40 Pairs) on the HPC Pin	
8. DATA ACQUISITION SYSTEM	
> Base Board Specification	
USB TMC Standards	
True plug and play	
Multi-Function USB DAQ	
Minimum Requirements	
40.1% ADO 0.44.1% DAO	
Analog Input: 8SE/4DI Simultaneous Sampling: 2 Channel	
Simultaneous Sampling : 2 Channel Sampling Pate : 1maps	
 Sampling Rate : 1msps 	

 Range: 0to5v Analog output: 4 Channel 24 high-speed digital I/O lines Resolution: 14 bit Speed: 2msps Range: 5v 	
 Essential Software Support Win XP / 7 supported drivers Support for Visual Studio® and Visual Studio® .NET NI LabVIEW™ support MATLAB® DAQ toolbox supported * Battery voltage and current, PV panel's voltage and current, Inverter output Voltage and Current displayed in a PC through the Data Acquisition system (DAS) 	

Nodal Officer (Procurement)
Nodal Officer (Procurement)
TEOIP-II
National Institute of Technology
Rourkeia-769008

FORMAT OF QUOTATION * SUBMISSION (In letterhead of the supplier with seal)

SI. No.	Description of goods (with full		_	Quoted Unit rate in Rs. (Including Ex-Factory price, excise duty, packing and	Total Price (A)	Sales tax and other taxes payable	
	Specifications)			forwarding, transportation, insurance, other local costs incidental to delivery and warranty/ guaranty commitments)		În %	In figures (B)
				Total Cost			
				Gross Total Cost (A+B): Rs			
We a	gree to supply the	above	goods i	n accordance with the technical specifications for a total contract	price of Rs.	(<i>P</i>	Amount in
figure	es) (Rupees ———		amo	ount in words) within the period specified in the Invitation for Quotat	ions.		
We c	onfirm that the norn	nal com	nmercia	I warranty/ guarantee of ———— months shall apply to the	offered iten	ns and we also	confirm to
agree	with terms and cor	ditions	as mer	ntioned in the Invitation Letter.			
We hereby certify that we have taken steps to ensure that no person acting for us or on our behalf will engage in bribery.							
Signa	ture of Supplier						
Name	e:		_				
Addre	ess:		-				

Contact No: _____